Documentation for stats_arrays

The stats_arrays package provides a standard NumPy array interface for defining uncertain parameters used in models, and classes for Monte Carlo sampling. It also plays well with others.


  • Want a consistent interface to SciPy and NumPy statistical function
  • Want to be able to quickly load and save many parameter uncertainty distribution definitions in a portable format
  • Want to manipulate and switch parameter uncertainty distributions and variables
  • Want simple Monte Carlo random number generators that return a vector of parameter values to be fed into uncertainty or sensitivity analysis
  • Want something simple, extensible, documented and tested

The stats_arrays package was originally developed for the Brightway2 life cycle assessment framework, but can be applied to any stochastic model.


>>> from stats_arrays import *
>>> my_variables = UncertaintyBase.from_dicts(
...     {'loc': 2, 'scale': 0.5, 'uncertainty_type':},
...     {'loc': 1.5, 'minimum': 0, 'maximum': 10, 'uncertainty_type':}
... )
>>> my_variables
array([(2.0, 0.5, nan, nan, nan, False, 3),
       (1.5, nan, nan, 0.0, 10.0, False, 5)],
    dtype=[('loc', '<f8'), ('scale', '<f8'), ('shape', '<f8'),
           ('minimum', '<f8'), ('maximum', '<f8'), ('negative', '?'),
           ('uncertainty_type', 'u1')])
>>> my_rng = MCRandomNumberGenerator(my_variables)
array([ 2.74414022,  3.54748507])
>>> # can also be used as an interator
>>> zip(my_rng, xrange(10))
[(array([ 2.96893108,  2.90654471]), 0),
 (array([ 2.31190619,  1.49471845]), 1),
 (array([ 3.02026168,  3.33696367]), 2),
 (array([ 2.04775418,  3.68356226]), 3),
 (array([ 2.61976694,  7.0149952 ]), 4),
 (array([ 1.79914025,  6.55264372]), 5),
 (array([ 2.2389968 ,  1.11165296]), 6),
 (array([ 1.69236527,  3.24463981]), 7),
 (array([ 1.77750176,  1.90119991]), 8),
 (array([ 2.32664152,  0.84490754]), 9)]

See a more complete notebook example.

Parameter array

The core data structure for stats_arrays is a parameter array, which is made from a special kind of NumPy array called a NumPy structured array which has the following data type:

import numpy as np
base_dtype = [
    ('loc', np.float64),
    ('scale', np.float64),
    ('shape', np.float64),
    ('minimum', np.float64),
    ('maximum', np.float64),
    ('negative', np.bool)


Read more on NumPy data types.


The negative column is used for uncertain parameters whose distributions are normally always positive, such as the lognormal, but in this case have negative values.

In general, most uncertainty distributions can be defined by three variables, commonly called location, scale, and shape. The minimum and maximum values make distributions bounded, so that one can, for example, define a normal uncertainty which is always positive.


Bounds are not applied in the following methods: 1) Distribution functions (PDF, CDF, etc.) where you supply the input vector. 2) .statistics, which gives 95 percent confidence intervals for the unbounded distribution.

Heterogeneous parameter array

Parameter arrays can have multiple uncertainty distributions. To distinguish between the different distributions, another column, called uncertainty_type, is added:

heterogeneous_dtype = [
    ('uncertainty_type', np.uint8),
    ('loc', np.float64),
    ('scale', np.float64),
    ('shape', np.float64),
    ('minimum', np.float64),
    ('maximum', np.float64),
    ('negative', np.bool)

Each uncertainty distribution has an integer ID number. See the table below for built-in distribution IDs.


The recommended way to use uncertainty distribution IDs is not by looking up the integers manually, but by referring to, e.g.

Mapping parameter array columns to uncertainty distributions

Name ID loc scale shape minimum maximum
Undefined 0 static value        
No uncertainty 1 static value        
Lognormal [1] 2 \(\boldsymbol{\mu}\) \(\boldsymbol{\sigma}\)   lower bound upper bound
Normal [2] 3 \(\boldsymbol{\mu}\) \(\boldsymbol{\sigma}\)   lower bound upper bound
Uniform [3] 4       minimum [4] maximum
Triangular [5] 5 mode [6]     minimum [7] maximum
Bernoulli [8] 6 p     lower bound upper bound
Discrete Uniform [9] 7       minimum [10] upper bound [11]
Weibull [12] 8 offset [13] \(\boldsymbol{\lambda}\) \(\boldsymbol{k}\)    
Gamma [14] 9 offset [15] \(\boldsymbol{\theta}\) \(\boldsymbol{k}\)    
Beta [16] 10 \(\boldsymbol{\alpha}\) upper bound \(\boldsymbol{\beta}\)    
Generalized Extreme Value [17] 11 \(\boldsymbol{\mu}\) \(\boldsymbol{\sigma}\) \(\boldsymbol{\xi}\)    
Student’s T [18] 12 median scale \(\boldsymbol{\nu}\)    

Items in bold are required, items in italics are optional.

[1]Lognormal distribution. \(\mu\) and \(\sigma\) are the mean and standard deviation of the underlying normal distribution
[2]Normal distribution
[3]Uniform distribution
[4]Default is 0 if not otherwise specified
[5]Triangular distribution
[6]Default is \((minimum + maximum) / 2\)
[7]Default is 0 if not otherwise specified
[8]Bernoulli distribution. If minimum and maximum are specified, \(p\) is not limited to \(0 < p < 1\), but instead to the interval \((minimum,maximum)\)
[9]Discrete uniform
[10]The discrete uniform operates on a “half-open” interval, \([minimum, maximum)\), where the minimum is included but the maximum is not. Default is 0 if not otherwise specified.
[11]The distribution includes values up to, but not including, the maximum.
[12]Weibull distribution
[13]Optional offset from the origin
[14]Gamma distribution
[15]Optional offset from the origin
[16]Beta distribution
[17]Extreme value distribution
[18]Student’s T distribution

Unused columns can be given any value, but it is recommended that they are set to np.NaN.


Unused optional columns must be set to np.NaN to avoid unexpected behaviour!

Extending parameter arrays

Parameter arrays can have additional columns. For example, model parameters that will be inserted into a matrix could have columns called row and column. For speed reasons, it is recommended that only NumPy numeric types are used if the arrays are to stored on disk.

Indices and tables